
22. Stereochemistry of Arylidenecyanoacetic Acids and Arylarylideneacetonitriles.

By WILSON BAKER and C. S. HOWES.

Aromatic aldehydes react with the sodium salt or the ethyl ester of cyanoacetic acid to give trans(with respect to the aryl and carboxyl groups)-arylidenecyanoacetic acids or esters. In the o-hydroxyaryl series, the configuration is established by conversion in boiling water into coumarin-3-carboxylic acids (II). cis-2-Methoxyarylidenecyanoacetic acids are prepared by methylation in alkaline solution of 3-cyanocoumarins (III) (new preparation). Two stereoisomeric pairs of 2-methoxyarylidenecyanoacetic acids have thus been prepared; the cis-acids are converted into the trans-acids on melting. In the light of this work the arylarylideneacetonitriles are shown to be the trans-isomers.

2-HYDROXYBENZYLIDENECYANOACETIC ACID (I; R = H), prepared by condensation of salicylaldehyde with aqueous, alkaline sodium cyanoacetate, passes in 1–2 minutes in boiling water into the ammonium salt of coumarin-3-carboxylic acid (II; R = H) (Baker and Lapworth, *J.*, 1925, 127, 561; see also Clarke and Francis, *Ber.*, 1911, 44, 275). This cannot be due to hydrolysis of the cyano- to a carboxyl group and lactonisation (Bechert, *J. pr. Chem.*, 1894, 50, 11), since the arylidenecyanoacetic acids, except those with an *o*-hydroxyl group, are unaffected by prolonged boiling with water or even hydrochloric acid, nor can it be due to lactonisation to 3-cyanocoumarin (III; R = H) and hydrolysis to the acid (II; R = H), since (III; R = H) and the related amide are not hydrolysed by boiling water. The acid (I; R = H) must, therefore, pass into (II; R = H) *via* an iminolactone (IV; R = H) which is at once hydrolysed to the coumarin, and must consequently possess adjacent hydroxyl and cyano-groups. Hence (I; R = H) is a derivative of *trans*-cinnamic acid, and may be termed *trans*-2-hydroxybenzylidenecyanoacetic acid (*trans*- α -cyano-2-hydroxycinnamic acid).

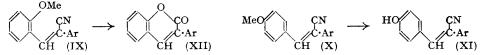
The conversion of (I; R = H) into (II; R = H) is initiated by attack of the anionoid phenolic oxygen atom on the cationoid carbon of the cyano-group held in a stereochemically favourable position by the olefinic bond. The related saturated acid, 2-hydroxybenzylcyanoacetic acid, is almost unchanged by boiling with water for 30 hours. The time of

conversion of (I; R = H) into (II; R = H) in boiling water is increased by addition of hydrochloric acid (*e.g.*, 3 minutes in N-HCl, 7 minutes in 10N-HCl); the choice between alternative explanations for this behaviour cannot be made.

Evidence that an imino-lactone (IV; R = H) is an intermediate in the conversion of (I; R = H) into (II; R = H) is provided by a new preparation of 3-cyanocoumarin (III; R = H) from *o*-hydroxybenzylidenemalononitrile (VI; R = H), itself prepared from salicylaldehyde and malononitrile. The dinitrile (VI; R = H), which is insoluble in water, dissolves rapidly in cold dilute hydrochloric acid as the salt of the imino-lactone, and, after a few minutes, the neutral 3-cyanocoumarin (III; R = H) separates out. The dicyano-compound (VI; R = H) is a powerful sternutator and irritant, and thus resembles some other $\alpha\beta$ -unsaturated malononitriles (Corson and Stoughton, J. Amer. Chem. Soc., 1928, **50**, 2825).

3-Cyanocoumarin (III; R = H) dissolves in N-sodium hydroxide at 30° as the sodium salt of *cis*-2-hydroxybenzylidenecyanoacetic acid; acidification reprecipitates (III; R = H). If, however, the alkaline solution is boiled for five minutes, acidification precipitates the *trans*-acid (I; R = H). Mild treatment with methyl sulphate of the solution of the sodium salt of the *cis*-acid gives *cis*-2-methoxybenzylidenecyanoacetic acid (VII; R = H), which differs from the *trans*-2-methoxybenzylidenecyanoacetic acid (V; R = H) prepared either by methylation of the *trans*-acid (I; R = H) or by condensation of 2-methoxybenzaldehyde with aqueous sodium cyanoacetate. It was hoped that there might be sufficient difference in the ultra-violet absorption spectra of the *cis*- and the *trans*-isomer to enable them to be used as reference compounds in deciding the stereochemistry of other arylidenecyanoacetic acids or related molecules; the curves are, however, so alike (see Table) that this object cannot be achieved.

These stereoisomeric acids (VII; R = H) and (V; R = H) differ markedly in their stability, the *cis*-acid (m. p. 159—160°) being converted into the *trans*-acid (m. p. 211—212°) at its melting point. Again, although the *trans*-acid undergoes normal esterification to the ethyl ester (Dave and Nargund, *J. Univ. Bombay*, 1938, 7, 196) (also obtained directly from *o*-methoxybenzaldehyde and ethyl cyanoacetate), the *cis*-acid, even under mild conditions in presence of hydrogen chloride or toluene-*p*-sulphonic acid, gives the ethyl ester of the *trans*-acid. The two acids also differ in their behaviour when the solids are irradiated with ultra-violet light (see Experimental).


Crystalline ethyl *trans*-2-methoxybenzylidenecyanoacetate passes extremely slowly in daylight, more rapidly in ultra-violet light, into a higher-melting, saturated dimeride. This is probably one stereoisomer of diethyl 1:3-dicyano-2:4-di-o-methoxyphenylcyclo-butane-1:3-dicarboxylate (VIII).

A similar series of reactions has been carried out starting with 5-bromo-2-hydroxybenzaldehyde. With sodium cyanoacetate it gives *trans*-5-bromo-2-hydroxybenzylidenecyanoacetic acid (I; R = Br), which with boiling water gives the ammonium salt of 6-bromocoumarin-3-carboxylic acid (II; R = Br). Methylation of (I; R = Br) gives trans-5-bromo-2-methoxybenzylidenecyanoacetic acid (V; R = Br), also obtained from 5-bromo-2-methoxybenzaldehyde and sodium cyanoacetate. 5-Bromo-2-methoxybenzaldehyde and malononitrile give 5-bromo-2-hydroxybenzylidenemalononitrile (VI; R = Br), converted by dissolution in dilute hydrochloric acid into 6-bromo-3-cyanocoumarin (III; R = Br). Methylation of this cyanocoumarin in alkaline solution gives *cis*-5bromo-2-methoxybenzylidenecyanoacetic acid (VII; R = Br). The *cis*-acid crystallises unchanged from benzene but gives the *trans*-acid when crystallised from ethanol or when melted. There were again differences in the behaviour of the solid stereoisomerides towards ultra-violet light; the ultra-violet extinction curves in ethanol were very similar, but as in the case of the stereoisomeric acids (V and VII; R = H) the absorption curve of the *trans*-acid is displaced towards the longer wave-lengths in comparison with the *cis*acid.

Ethyl *trans*-5-bromo-2-methoxybenzylidenecyanoacetate, obtained either by esterification of the acid (I; R = Br) or, more conveniently, from 5-bromo-2-methoxybenzaldehyde and ethyl cyanoacetate, does not dimerise in ultra-violet light.

In the β -resorcylaldehyde series, 2-hydroxy-4-methoxybenzaldehyde and sodium cyanoacetate give *trans*-2-hydroxy-4-methoxybenzylidenecyanoacetic acid, converted by boiling water into 7-methoxycoumarin-3-carboxylic acid (Baker and Collis, J., 1949, S 12), and by methyl sulphate and alkali into *trans*-2: 4-dimethoxybenzylidenecyanoacetic acid, also obtained from 2: 4-dimethoxybenzaldehyde and sodium cyanoacetate. Esterification of *trans*-2: 4-dimethoxybenzylidenecyanoacetic acid gave the ethyl ester, identical with that obtained from 2: 4-dimethoxybenzaldehyde and ethyl cyanoacetate (Kauffmann, *Ber.*, 1919, **52**, 1433); this ester is unaltered by ultra-violet light.

The present work explains the "abnormal behaviour" of 2-methoxybenzylidenearylacetonitriles (IX) when demethylated by boiling with pyridine hydrochloride (Buu-Hoï, Hoán, and Lavit, J., 1950, 2130; Buu-Hoï and Hoán, J., 1951, 251; Buu-Hoï, Hoán, and Khenissi, J., 1951, 2307). These authors observed that although demethylation of, e.g., 4-methoxybenzylidenearylacetonitriles (X) gave simply the phenols (XI), yet demethylation of the corresponding 2-methoxybenzylidene derivatives "resulted also in hydrolysis of the nitrile group and lactonisation, with formation of 3-substituted coumarins" (XII).

There is no reason to expect a different order of stability of the CN groups in the o- and p-methoxy-compounds (IX) and (X), and it is clear that the demethylation of (IX) is followed by reaction of the phenolic group with the adjacent cyano-group to give an imino-lactone which is then hydrolysed to the 3-arylcoumarin (XII). Hence these 2-methoxybenzylidenearylacetonitriles must possess that geometrical configuration in which the aryl radicals are in the *trans*-position as shown in (IX). It is likely that all the arylidenearylacetonitriles are the *trans*-isomers.

EXPERIMENTAL

M. p.s are uncorrected. Analyses are by Drs. Weiler and Strauss, Oxford, and Mr. W. M. Eno, Bristol.

trans-2-Methoxybenzylidenecyanoacetic (trans- α -Cyano-2-methoxycinnamic) Acid (V; R = H).—2-Hydroxybenzylidenecyanoacetic acid (7.5 g.; Haarmann and Reimer, D.R.-P., 189,252), suspended in 50% ethanol (40 c.c.), was shaken during portionwise addition of 40% aqueous potassium hydroxide (75 c.c.) and methyl sulphate (50 c.c.) at 40—50° (it is essential to keep the mixture very strongly alkaline, for otherwise the product is coumarin-3-carboxylic acid). The now pale yellow solution was diluted, acidified, and boiled to convert unchanged 2-hydroxybenzylidenecyanoacetic acid into coumarin-3-carboxylic acid, and the solid crystallised twice from ethanol, giving trans-2-methoxybenzylidenecyanoacetic acid (5.0 g.) as yellow prisms, m. p. 211—212°, identical (mixed m. p.) with that prepared by condensation of o-methoxybenzaldehyde with sodium cyanoacetate (McRae and Hopkins, Canad. J. Res., 1932, 7, B, 248). The crystalline acid shows a blue fluorescence in ultra-violet light, but solutions of the acid do not fluoresce.

Esterification (Fischer-Speier) gave the ethyl ester as greenish-yellow prisms, m. p. 76—77° (Dave and Nargund, *loc. cit.*); this *trans*-ester (mixed m. p.) was also obtained from *o*-methoxy-benzaldehyde (20 g.), ethyl cyanoacetate (17 g.), and piperidine (0.5 c.c.) in ethanol (100 c.c.) by boiling for 1 minute and cooling (yield, 29.4 g.).

2-Hydroxybenzylidenemalononitrile (VI; R = H).—To a solution of salicylaldehyde (5 g.) and malononitrile (2.6 g.) in ethanol (20 c.c.) was added piperidine (2 drops), heat being evolved. A very pale yellow solid separated from the cooled orange-red solution; after being washed with cold alcohol this product (5.5 g.) had m. p. 167° (decomp.) (Found : C, 69.5; H, 3.4; N, 16.0. $C_{10}H_6ON_2$ requires C, 70.6; H, 3.5; N, 16.4%). This 2-hydroxybenzylidenemalononitrile must be handled with care (see p. 120). Like trans-2-hydroxybenzylidenecyanoacetic acid (I; R = H) it could not be recrystallised unchanged. It differs from the reddish-yellow substance, m. p. 183—184°, prepared in a similar way by Hinrichsen and Lohse (Annalen, 1904, **336**, 344), and claimed, without analytical support, to be the dinitrile (VI; R = H).

3-Cyanocoumarin (III; R = H).—2-Hydroxybenzylidenemalononitrile (5 g.) was dissolved, by shaking, in 4N-hydrochloric acid (300 c.c.), and after a few minutes 3-cyanocoumarin began to separate; the reaction is faster at 60°. The washed product (4.6 g., 92%) had m. p. 184— 185° before and after crystallisation from ethanol, from which it separated in almost colourless prisms (Found : N, 8.3. Calc. for $C_{10}H_5ON$: N, 8.2%). 3-Cyanocoumarin, m. p. 182°, was prepared by Bechert (*J. pr. Chem.*, 1894, 50, 23) from salicylidenebismalonic ester and by Sastry and Seshadri (*Proc. Indian Acad. Sci.*, 1942, 16, *A*, 29) from salicylaldehyde, ethyl cyanoacetate, and piperidine (30% yield).

cis-2-Methoxybenzylidenecyanoacetic Acid (VII; R = H).—The conditions necessary to obtain this compound are critical. 3-Cyanocoumarin (3.8 g.) was shaken for 10 minutes with N-sodium hydroxide (120 c.c.) at 30°; most of the solid dissolved to a yellow solution, and then methyl sulphate (4 × 2 c.c.) was added during 45 minutes with continual shaking at 25—30°. After a further $\frac{1}{4}$ hour, the solution was cooled, acidified with dilute hydrochloric acid, and kept at 0° for 1 hour, and the pale yellow solid was washed and then shaken with dilute aqueous sodium hydrogen carbonate (100 c.c.). Insoluble 3-cyanocoumarin (2.7 g.) was collected, and the chilled filtrate acidified, giving a yellow solid (1.15 g., m. p. 156°). This was crystallised from a solution saturated at 30° in a mixture of methylene chloride and light petroleum (b. p. 60—80°) by slowly cooling to -5° , giving cis-2-methoxybenzylidenecyanoacetic (cis- α -cyano-2-methoxycinnamic) acid as bright yellow needles, m. p. 159—160° [Found : C, 65·0; H, 4·5; N, 6·6; OMe, 15·0. C₁₀H₆O₂N(OMe) requires C, 65·1; H, 4·4; N, 6·9; OMe, 15·2%]. After melting at 159—160° it resolidifies at 160° in 30 seconds, and then has m. p. 208° owing to conversion into the trans-acid (V; R = H). More vigorous methylation leads to a mixture of cis- and trans-methylated acids.

Solutions of this acid are not fluorescent. In ultra-violet light the crystals at first appear brown, but in about 5 minutes develop a yellow-green fluorescence. This may be due to change in crystalline form, since solution in, *e.g.*, acetone and evaporation of the solvent gives again the non-fluorescent material with which the changes may be repeated.

Dimerisation of Ethyl trans-2-Methoxybenzylidenecyanoacetate.—This ester (2.7 g.; m. p. 76—77°) was finely powdered, enclosed in a slowly rotating (20—30 r.p.m.), clear, silica tube (15 × 3 cm.), and irradiated with ultra-violet light for 9 days; the m. p.s after 1, 5, and 9 days were 75—115°, 84—135°, and 110—140° respectively. The product was spread in a thin, compact layer on porous porcelain and kept at 80—85° for 12 hours, leaving a residue (m. p. 146—152°) which, twice crystallised from ethanol, gave the dimeride as a colourless microcrystalline powder (1.51 g.), m. p. 163° (Found : C, 67.5; H, 5.7; N, 6.3%; M, ebullioscopic in benzene, 469. $C_{26}H_{26}O_6N_2$ requires C, 67.5; H, 5.6; N, 6.1%; M, 462). Unchanged starting material was obtained from the porcelain.

trans-5-Bromo-2-hydroxybenzylidenecyanoacetic (trans-5-Bromo- α -cyano-2-hydroxycinnamic) Acid (I; R = Br).—5-Bromo-2-hydroxybenzaldehyde (4 g.; Auwers and Burger, Ber., 1904, **37**, 3934) was condensed with alkaline, aqueous sodium cyanoacetate according to Lapworth and McRae (J., 1922, **121**, 1700), giving, after washing with water and benzene, the acid as a bright yellow powder (4.9 g.), m. p. 167—168° (decomp.) (Found : N, 5.1; Br, 29.9. C₁₀H₆O₃NBr requires N, 5.2; Br, 31.0%). Like other trans-o-hydroxybenzylidenecyanoacetic acids, this acid cannot be recrystallised unchanged, and its colour fades and the m. p. rises on several weeks' storage.

6-Bromocoumarin-3-carboxylic Acid (II; R = Br).—The acid (I; R = Br) (325 mg.) was boiled with water (30 c.c.) for a few minutes, and the colourless solution acidified and cooled. The precipitated 6-bromocoumarin-3-carboxylic acid (II; R = Br) (300 mg.) crystallised from dilute ethanol in needles, m. p. 198° (Found : C, 45.0; H, 1.9; Br, 29.5. Calc. for $C_{10}H_5O_4Br$: C, 44.6; H, 1.9; Br, 29.7%) (Pandya and Pandya, *Proc. Indian Acad. Sci.*, 1943, 18, A, 164, prepared this acid from 5-bromo-2-hydroxybenzaldehyde and malonic acid, and record m. p. 200°).

trans-5-Bromo-2-methoxybenzylidenecyanoacetic Acid (V; R = Br).—(a) Methylation of the phenolic acid (I; R = Br) (4.9 g.) essentially as described in the case of the acid (I; R = H) gave a mixture of (V; R = Br) and 6-bromocoumarin-3-carboxylic acid (II; R = Br). These were separated by 3% aqueous sodium hydrogen carbonate (400 c.c.) in which the latter is very sparingly soluble, filtering, and acidifying the solution slowly; the colourless acid (II; R = Br), first precipitated, is removed, and is followed by the yellow acid (V; R = Br) (1.1 g.). The trans-5-bromo-2-methoxybenzylidenecyanoacetic (trans-5-bromo- α -cyano-2-methoxycinnamic) acid separated from ethanol in prisms, m. p. 240—241° (Found : C, 47.5; H, 2.9; N, 4.8; Br, 28.9. C₁₁H₈O₃NBr requires C, 46.8; H, 2.8; N, 5.0; Br, 28.4%). It shows a pale green fluorescence in ultra-violet light.

(b) 5-Bromo-2-methoxybenzaldehyde (Shapiro and Smith, J., 1946, 143) (3 g.) was condensed with warm, alkaline sodium cyanoacetate [see preparation of acid (I; R = Br)], giving the acid (V; R = Br) (2.8 g.), which after crystallisation from ethanol had m. p. and mixed m. p. 241-242°.

6-Bromo-3-cyanocoumarin (III; R = Br).—5-Bromo-2-hydroxybenzaldehyde (5 g.) was condensed with malononitrile (1·8 g.) as in the case of salicylaldehyde (above), giving crude 5-bromo-2-hydroxybenzylidenemalononitrile (5·1 g.), m. p. 174—175° (decomp.) (Found : N, 13·0. $C_{10}H_5ON_2Br$ requires N, 11·3%), which could not be crystallised unchanged. This substance is a powerful sternutator and irritant. The dinitrile (4 g.) was converted by dilute hydrochloric acid, as in the case of compound (VI; R = H), into 6-bromo-3-cyanocoumarin (3·5 g.), which crystallised from ethanol (charcoal) in almost colourless prisms, m. p. 200— 201° (Found : C, 47·7; H, 1·6; N, 5·4; Br, 33·0. $C_{10}H_4O_2NBr$ requires C, 48·0; H, 1·6; N, 5·6; Br, 32·0%). This cyanocoumarin is precipitated unchanged from a solution in N-sodium hydroxide at 30°, but if the alkaline solution is boiled for 5 minutes acidification gives trans-5bromo-2-hydroxybenzylidenecyanoacetic acid (I; R = Br).

cis-5-Bromo-2-methoxybenzylidenecyanoacetic Acid (VII; R = Br).—6-Bromo-3-cyanocoumarin (2·25 g.) was methylated in alkaline solution as in the preparation of cis-2-methoxybenzylidenecyanoacetic acid (VII; R = H). From the mixed product was isolated unchanged 6-bromo-3-cyanocoumarin (1·4 g.), insoluble in aqueous sodium hydrogen carbonate, and the filtrate yielded a solid (0·85 g.) which was crystallised twice from benzene, giving cis-5-bromo-2methoxybenzylidenecyanoacetic (cis-5-bromo- α -cyano-2-methoxycinnamic) acid as aggregates of pale yellow, microscopic prisms (Found: C, 47·1; H, 3·0; N, 4·8; Br, 28·7. C₁₁H₈O₃NBr requires C, 46·8; H, 2·8; N, 5·0; Br, 28·4%), m. p. (very rapid heating) 165° followed by immediate resolidification and final melting at 237—239° owing to conversion into the trans-acid (V; R = Br). The solid acid shows the same phenomena in ultra-violet light as does cis-2-methoxybenzylidenecyanoacetic acid (VII; R = H).

Ethyl trans-5-Bromo-2-methoxybenzylidenecyanoacetate.—(a) 5-Bromo-2-methoxybenzaldeyde (2.5 g.), ethyl cyanoacetate (1.5 g.), ethanol (10 c.c.), and piperidine (2 drops) were warmed and cooled, giving ethyl trans-5-bromo-2-methoxybenzylidenecyanoacetate (3.2 g.) as pale yellow crystals, m. p. 103° (Found : C, 50.6; H, 3.9; N, 4.2; Br, 26.2. $C_{13}H_{12}O_3NBr$ requires C, 50.4; H, 3.9; N, 4.5; Br, 25.8%), from ethanol. (b) Esterification (Fischer-Speier) of trans-5-bromo-2-methoxybenzylidenecyanoacetic acid (V; R = Br) gave the same ester in 86% yield. This substance is not dimerised when exposed to ultra-violet light.

trans-2: 4-Dimethoxybenzylidenecyanoacetic (trans- α -Cyano-2: 4-dimethoxycinnamic) Acid.— (a) 2: 4-Dimethoxybenzaldehyde (5 g.). with alkaline, aqueous sodium cyanoacetate as in the previous cases, gave the acid (88%) as yellow needles, m. p. 255° (decomp.) (Found: C, 61.8; H, 4.9; N, 5.9. C₁₂H₁₁O₄N requires C, 61.8; H, 4.7; N, 6.0%), from ethanol. It gives a yellow fluorescence in ultra-violet light. (b) 2-Hydroxy-4-methoxybenzylidenecyanoacetic acid was treated with methyl sulphate and alkali, and the product crystallised several times from dioxan and finally from ethanol, giving trans-2: 4-dimethoxybenzylidenecyanoacetic acid (ca. 20%) identical with that obtained above.

3-Cyano-7-methoxycoumarin.—2-Hydroxy-4-methoxybenzaldehyde (8 g.) and malononitrile (3·4 g.) gave, as in the cases of the dinitriles (VI; R = H and Br), crude 2-hydroxy-4-methoxybenzylidenemalononitrile (10·3 g.), m. p. 162—165° (decomp.), which could not be crystallised unchanged (Found : N, 15·3. Calc. for $C_{11}H_8O_2N_2$: N, 14·0%). This dinitrile with dilute hydrochloric acid [see preparations of the cyanocoumarins (III; R = H and Br)] yielded

124 Baddeley, Taylor, and Pickles: Preparation of cycloPentenones

3-cyano-7-methoxycoumarin (80%), needles, m. p. $221-222^{\circ}$ (Found : C, $65\cdot4$; H, $3\cdot7$; N, $6\cdot7$. C₁₁H₇O₃N requires C, $65\cdot7$; H, $3\cdot5$; N, $7\cdot0\%$), from ethanol. Dilute solutions of this compound show strong blue-violet fluorescence. Methylation to *cis*-2: 4-dimethoxybenzylidenecyano-acetic acid could not be achieved.

Ultra-violet absorption spectra characteristics of cis- and trans-R·CH:C(CN)·CO₂H in EtOH.

R	λ_{\max} , m μ (log ε)	λ_{\min} , m μ (log ϵ)
cis-o-Methoxyphenyl	225(4.02) $279(4.05)$ $323(3.94)$	222(4.01) $247(3.65)$ $304(3.86)$
trans- ,,	229(3.95) $284(4.04)$ $334(3.96)$	222(3.92) $249(3.55)$ $311(3.85)$
cis-5-Bromo-2-methoxyphenyl	224(4.18) $281(4.03)$ $341(3.80)$	258(3.84) 316(3.70)
trans- ,, ,,	224(4.18) $282(4.06)$ $345(3.82)$	258(3·82) 320(3·70)

Ethyl trans-2: 5-Dimethoxybenzylidenecyanoacetate.—Esterification of trans-2: 4-dimethoxybenzylidenecyanoacetic acid (Fischer-Speier) gave the ethyl ester (80%), pale yellow needles (from ethanol), m. p. 142—143°, identical (mixed m. p.) with that prepared from 2: 4-dimethoxybenzaldehyde and ethyl cyanoacetate (Kauffmann, Ber., 1919, 52, 1433). It is not dimerised by ultra-violet light.

THE UNIVERSITY, BRISTOL.

[Received, September 20th, 1952.]